Empirical Characteristic Function Estimation and Its Applications
نویسنده
چکیده
This paper reviews the method of model-fitting via the empirical characteristic function. The advantage of using this procedure is that one can avoid difficulties inherent in calculating or maximizing the likelihood function. Thus it is a desirable estimation method when the maximum likelihood approach encounters difficulties but the characteristic function has a tractable expression. The basic idea of the empirical characteristic function method is to match the characteristic function derived from the model and the empirical characteristic function obtained from data. Ideas are illustrated by using the methodology to estimate a diffusion model that includes a self-exciting jump component. A Monte Carlo study shows that the finite sample performance of the proposed procedure offers an improvement over a GMM procedure. An application using over 72 years of DJIA daily returns reveals evidence of jump clustering.
منابع مشابه
A Perturbed Half-normal Distribution and Its Applications
In this paper, a new generalization of the half-normal distribution which is called the perturbed half-normal distribution is introduced. The new distribution belongs to a family of distributions which includes the half-normal distribution along with an extra parameter to regulate skewness. The probability density function (pdf) is derived and some various properties of the new distribution are...
متن کاملOn Some Properties and Estimation of a Skew Symmetric Density Function
In this paper we consider a general setting of skew-symmetric distribution which was constructed by Azzalini (1985), and its properties are presented. A suitable empirical estimator for a skew-symmetric distribution is proposed. In data analysis, by comparing this empirical model with the estimated skew-normal distribution, we show that the proposed empirical model has a better fit in den...
متن کاملA New Goodness-of-Fit Test for a Distribution by the Empirical Characteristic Function
Extended Abstract. Suppose n i.i.d. observations, X1, …, Xn, are available from the unknown distribution F(.), goodness-of-fit tests refer to tests such as H0 : F(x) = F0(x) against H1 : F(x) $neq$ F0(x). Some nonparametric tests such as the Kolmogorov--Smirnov test, the Cramer-Von Mises test, the Anderson-Darling test and the Watson test have been suggested by comparing empirical ...
متن کاملMoment Inequalities for Supremum of Empirical Processes of U-Statistic Structure and Application to Density Estimation
We derive moment inequalities for the supremum of empirical processes of U-Statistic structure and give application to kernel type density estimation and estimation of the distribution function for functions of observations.
متن کاملEstimation of stable spectral measures
We present two new estimators of a stable spectral measure. One is based on the empirical characteristic function, the other is based on one dimensional projections of the data. We compare these estimators with the Rachev-Xin-Cheng estimator in an empirical study. Their applications in modeling nancial portfolios are also discussed.
متن کامل